Markov chain Monte Carlo algorithms for SDE parameter estimation

نویسندگان

  • Andrew Golightly
  • Darren J. Wilkinson
چکیده

This chapter considers stochastic differential equations for Systems Biology models derived from the Chemical Langevin Equation (CLE). After outlining the derivation of such models, Bayesian inference for the parameters is considered, based on state-of-the-art Markov chain Monte Carlo algorithms. Starting with a basic scheme for models observed perfectly, but discretely in time, problems with standard schemes and their solutions are discussed. Extensions of these schemes to partial observation and observations subject to measurement error are also considered. Finally, the techniques are demonstrated in the context of a simple stochastic kinetic model of a genetic regulatory network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EM algorithm coupled with particle filter for maximum likelihood parameter estimation of stochastic differential mixed-effects models

Biological processes measured repeatedly among a series of individuals are standardly analyzed by mixed models. These biological processes can be adequately modeled by parametric Stochastic Differential Equations (SDEs). We focus on the parametric maximum likelihood estimation of this mixed-effects model defined by SDE. As the likelihood is not explicit, we propose a stochastic version of the E...

متن کامل

Posterior inference on parameters of stochastic differential equations via non-linear Gaussian filtering and adaptive MCMC

This article is concerned with Bayesian estimation of parameters in non-linear multivariate stochastic differential equation (SDE) models occurring, for example, in physics, engineering, and financial applications. In particular, we study the use of adaptive Markov chain Monte Carlo (AMCMC) based numerical integration methods with nonlinear Kalman-type approximate Gaussian filters for parameter...

متن کامل

The Coloured Noise Expansion and Parameter Estimation of Diffusion Processes

Stochastic differential equations (SDE) are a natural tool for modelling systems that are inherently noisy or contain uncertainties that can be modelled as stochastic processes. Crucial to the process of using SDE to build mathematical models is the ability to estimate parameters of those models from observed data. Over the past few decades, significant progress has been made on this problem, b...

متن کامل

Computational Methods for a Class of Network Models

In the following article, we provide an exposition of exact computational methods to perform parameter inference from partially observed network models. In particular, we consider the duplication attachment model that has a likelihood function that typically cannot be evaluated in any reasonable computational time. We consider a number of importance sampling (IS) and sequential Monte Carlo (SMC...

متن کامل

Efficient moment calculations for variance components in large unbalanced crossed random effects models

Large crossed data sets, described by generalized linear mixed models, have become increasingly common and provide challenges for statistical analysis. At very large sizes it becomes desirable to have the computational costs of estimation, inference and prediction (both space and time) grow at most linearly with sample size. Both traditional maximum likelihood estimation and numerous Markov cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008